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SUMMARY

In the simulations of rail vehicle dynamic behaviour, the computation of wheel-rail forces is repeated
many times. Therefore a short calculation time is very important. A fast algorithm and computer code for
the computation of wheel-rail forces under known contact geometry and creep and spin conditions is
presented in the paper. The proposed method assumes ellipsoidal contact area and normal stress
distribution according to Hertz. Because of the short calculation time it can be used instead of simple
formulas to improve the accuracy or as a substitution of Kalker's programme FASTSIM to save the
computation time. The method has been tested and used in different simulation tools with very good
experience. The computer code and some test results given in the appendix allow to apply this method in
the user’s own computer simulation programmes.

1. INTRODUCTION

The calculation of wheel-rail contact forces has always been important because of
analysis of dynamic behaviour of rail vehicles, their running qualities and forces and
stresses acting on the track. In a computer simulation,  the computation of wheel-rail
forces is repeated many times. Therefore a short calculation time is very important. 
The exact theory by Kalker (computer programme CONTACT [1]) is not possible to
use in the simulations because of its very long calculation time. The simplified
theory used in Kalker’s programme FASTSIM [2] is much faster than the exact
theory, but the calculation time is also often too long for use in complicated multi-
body systems. 
Searching for faster methods some authors found approximations with simple
saturation functions (e.g. [4]). The calculation time using these approximations is
short, but there are significant differences to the exact theory.
Another possibility for computer simulations consists in the use of look-up tables
with saved pre-calculated values. Because of the limited data in the look-up table,
there are differences to the exact theory as well. Large tables are more exact, but the
searching in such large tables consumes calculation time.
Disadvantages mentioned above can be avoided by using the proposed algorithm. In
spite of the simplifications used, spin is considered. Because of the short calculation
time, the creation of a look-up table is not necessary. In comparison to other
approximation methods, a smaller difference between the calculated values and the
exact theory can be achieved.
The paper contains the theoretical background of the algorithm, the computer code



in FORTRAN and some test results to facilitate an application in your own computer
simulation programmes.

2. THEORETICAL BACKGROUND

The proposed method assumes the ellipsoidal contact area with semiaxis a, b and
normal stress distribution according to Hertz. The maximum value of tangential
stress τ at any arbitrary point is

�� .max f�  (1)
where  f  - coefficient of friction,

���- normal stress.
The coefficient of friction f is
assumed constant in the whole
contact area. 
The solution assumes a linear
growth of the relative displacement
between the bodies from the
leading point (A) to the trailing
point (C) on the edge of the contact
area (Fig. 1). At first the contact
surfaces of the bodies stick firmly
together and the displacement of
the bodies is the result of material
creepage (area of adhesion). The
tangential stress τ acts against the
creep and its value grows linearly
with the distance from the leading
edge (the assumption is identical
with Kalker’s simplified theory). If
τ in the adhesion area reaches its
maximum value according to (1) a
relative motion of the contact
surfaces appears. This part of contact area is called the area of slip. The tangential
stress acts against the slip according to (1).
The tangential force is determined as 
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where U - contact area.
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Fig. 1.    Assumption of distribution of normal and
tangential stresses in the wheel-rail contact
area
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sx, sy - slip in x and y directions
Freibauer [5] has solved the creep-force law without spin using a transformation of
the tangential stress distribution ellipsoid to a hemisphere with the formulae
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where y*, �* - transformed variables y, �
�0 - the maximum stress in the centre of the contact area

The tangential stress is proportional to slip s and the distance from the leading edge
(Fig. 1) with proportionality constant C, which is a value characterising the contact
elasticity of the bodies (tangential contact stiffness). The gradient of tangential stress
in the area of  adhesion is 
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where Q - wheel load
The tangential force is then
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According to the theory of Hertz
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where �0 - maximal normal stress in the contact area.
After substitution into (7) we obtain
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The vector forces Fx, Fy are calculated from (9) using formulae (3).
When solving the wheel-rail contact problem, the spin is of a considerable
importance. Spin is a rotation about the vertical axis z caused by wheel conicity.
Further under the title spin we will understand the relative spin ψ which means the
angular velocity about z-axis divided by speed v. The spin is
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where � - angular velocity of wheel rolling
γ - angle of contact surfaces
r  - wheel radius

In the following part a force effect of the spin will be mentioned. The moment effect
of spin as well as the moment effect caused by lateral slip are neglected because they
are too small in comparison with other moments acting on the vehicle.
At a pure spin the vector force Fx is zero. The centre of rotation is situated on the
longitudinal axis of the contact area, but its position depends on the equilibrium of



the forces and is unknown at the beginning of the solution. If the longitudinal
semiaxis is too small (a�0), the centre of spin rotation is approaching the origin of
the co-ordinate system. Using the transformation of the tangential stress distribution
ellipsoid to a hemisphere, the lateral tangential force caused by pure spin was found
as

(11)

Using the formula (8) we get
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and creep s in equation (6) is given as � � a. However this solution is valid only for
a�0.
The detailed solution for different relations a/b given by Kalker [3] showed that with
an increasing relation a/b the force effect of the spin grows. Looking for a fast
solution to be used in simulations, a correction of dependence (11) for a > 0 was
found. The forces caused by longitudinal and lateral creepages and the lateral force
caused by spin are calculated separately. In the equations (3), (4) and (6) instead of
the slip s there is resulting slip sc
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where syC is given as
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The resulting force effect in lateral direction is given as the sum of both above
described effects respecting the creep saturation as follows
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where FyS - increase of the tangential force caused by the spin.
Its value is
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where KM is obtained by (13) and � is actually given as
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The contact stiffness C in (6) and (19) can be found by experiments or can be
obtained from Kalker's constants [3].

3.  USE OF THE PROPOSED METHOD WITH THE CONSTANTS FROM
KALKER

The value of the tangential contact stiffness C is derived by assuming an identical
linear part of the creep-force law according to Kalker theory and proposed method.
According to the proposed theory, if the creep is close to 0 (��0), without spin
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and according to Kalker
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Fig. 2. Comparison of non-dimensional tangential forces caused by longitudinal and lateral
creepages



where cjj – Kalker’s constants (c11 for longitudinal direction, c22 for lateral
direction)
After the comparison of (20) with (21) we get
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After the substitution of (22) in (6) the gradient � of tangential stress is 
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Because c11�c22, constant cjj will be obtained as follows
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The lateral force caused by the spin (12) is for  ��0  according to the proposed
theory
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and according to Kalker’s theory
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With comparison of (25) and (26) we get
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Fig. 3. Comparison of non-dimensional lateral forces caused by pure spin
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After the substitution of (27) in (19) the gradient of tangential stress �S  used for
calculation of spin influence is
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The comparison of the proposed method with Kalker's programme FASTSIM has
been done in the non-dimensional co-ordinates

� non-dimensional wheel-rail forces

Fig. 4.  The difference between the two methods of calculation of the non-dimensional longitudinal
(left) and lateral (right) forces in function of creep and spin
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The results of the tangential forces caused by longitudinal and lateral creepages are
shown in Fig. 2, the comparison of lateral forces caused by pure spin is given in Fig.
3. Fig. 4 shows the difference of longitudinal and lateral non-dimensional forces
under different creep and spin conditions computed with the proposed method and
with the programme FASTSIM. The difference was defined as follows

yxiffd iPiKi ,��� (32)

where fiK – non-dimensional force computed with FASTSIM (n=30, where n is
number of slices in FASTSIM)

fiP – non- dimensional force computed with the proposed method
The greatest, though very rarely occurring differences amount to less than 0.3, which
is acceptable for practical use in railway
vehicle dynamics. However the proposed
algorithm is about 17 times faster than the
programme FASTSIM with recommended
number of slices n=10 (Fig. 5). The
computation time profit using this method
in the simulations of rail vehicle dynamics
depends, of course, on the structure of the
tools. Tests in different programmes give a
3 to 8 times faster calculation time as
compared to FASTSIM.
The computer code for use of proposed
method as a fast approximation of Kalker’s
solution can be found in the appendix.
There are also some examples which allow
to control the results and to apply this
method in the user’s own computer
simulation programmes.
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4. EXPERIENCE WITH USE OF PROPOSED METHOD

The algorithm has been used in the simulations in different programmes since 1990.
In-between, positive experience has been achieved in the research as well as in the
industrial application. The algorithm is used in ADAMS/Rail [7] as an alternative
parallel to FASTSIM and to the table-book. The calculation time is faster than
FASTSIM’s and usually faster than the table-book as well and there are no
convergence problems during the integration.
To compare the simulation results using the proposed method and FASTSIM,
curving analysis have been done with an ADAMS/Rail model of a four-axle
locomotive with radial steering wheelsets. The model consists of 51 rigid bodies  and
possesses 266 degrees of freedom. Fig. 6 shows the lateral forces and angles of
attack for two variants of axle guidance stiffness. The results using both methods
mentioned are very similar, however there is a big difference in the calculation time.
The comparison with measurements in a curve of 300 m radius (Fig. 7) confirms that
the results calculated using the proposed method show good agreement. Specially at
the leading wheelsets they are nearer to the actually measured values than the results
obtained in the simulations using FASTSIM.  
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5. CONCLUSIONS

The paper discuss a fast method suitable for wheel-rail forces calculation in
simulations of rail vehicle behaviour. The method allows calculation of full non-
linear forces and takes spin into account. Because of the short calculation time it can
be used instead of simple formulae to improve the accuracy or as a substitution of
Kalker's method to save computation time. The algorithm has been used in different
simulation tools since 1990 with very good experience. The computer code and some
test results given in the appendix allows to apply this method in the user’s own
computer simulation programmes.
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APPENDIX – COMPUTER CODE ADH

Used variables :
FX - longitudinal force in wheel-rail contact Fx
FY - lateral force in wheel-rail contact Fy
SX - longitudinal creep sx
SY - lateral creep sy
OM - spin ψ
Q  - wheel load Q
F  - coefficient of friction f
A  - semiaxis a of the contact ellipse (in longitudinal direction)
B  - semiaxis b of the contact ellipse (in lateral direction)
G  - modulus of rigidity G
PI - π = 3,14...
C1 - Kalker’s constant c

11
C2 - Kalker’s constant c

22
C3 - Kalker’s constant c

23

Computer code in FORTRAN:
       SUBROUTINE ADH(Q,F,A,B,SX,SY,OM,C1,C2,C3,FX,FY)
       REAL MI
       REAL KS
       G=8.4E+10 
       PI=3.14159
       FX=0
       FY=0
       MI=0
       SYC=SY
       IF (ABS(SY+OM*A).LE.ABS(SYC)) GOTO 10
       SYC=SY+OM*A
   10  CONTINUE
       SC=(SX*SX+SYC*SYC)**.5
       IF (SC.EQ.0) GOTO 999
       S=(SX*SX+SY*SY)**.5
       IF (S.EQ.0) GOTO 20
       CJ=((C1*SX/S)**2+(C2*SY/S)**2)**.5
       EP=PI*G*A*B*CJ*SC/(4.*Q*F)
       MI=(EP/(1.+EP*EP)+ATAN(EP))*2.*F/PI
   20  KS=1.+6.3*(1.-EXP(-A/B))
       EPM=8.*B*((A*B)**.5)*G*C3*ABS(SYC)/(3.*KS*Q*F)
       DE=((EPM)**2-1.)/((EPM)**2+1.)
       FYS=9.*A*F*KS*(EPM*(-DE**3/3.+DE**2/2.-1./6.)



    /      +1./3.*(1.-DE**2)**(1.5))/16.
       FX=-Q*MI*SX/SC
       FY=-Q*(MI*SY+FYS*OM)/SC
  999  CONTINUE
       PRINT FX, FY
       RETURN
       END

Examples of results :
NY = 0.25, G = 8.4×1010 Nm-2, PI = 3.14159, Q = 1×105 N, F = 0.3

A = 6×10-3 m, B = 6×10-3 m, C1 = 4.12, C2 = 3.67, C3 = 1.47 :
SX  = 0.004
SY  = 0
OM = 0  m-1

FX  = -26 732 N
FY  = 0  N

SX  = 0
SY  = 0.004
OM = 0  m-1

FX  = 0  N
FY  = -25 872 N

SX  = 0
SY  = 0
OM = 0.004 m-1

FX  = 0  N
FY  = -107 N

SX = 0.002
SY = 0.002
OM = 0.002 m-1

FX = -16 362 N
FY = -16 398 N

SX = 0.004
SY = 0.006
OM = 0 m-1

FX = -16 098 N
FY = -24 147 N

SX = 0.00005
SY = 0.004
OM = 0.008 m-1

FX = -321 N
FY = -25 834 N

SX = -0.00005
SY = 0.004
OM = 0.008 m-1

FX = 321 N
FY = -25 834 N

SX = -0.00005
SY = -0.004
OM = 0.8 m-1

FX = 323 N
FY = 8 259 N

SX = 0.00005
SY = -0.004
OM = -0.008 m-1 
FX = -321 N
FY = 25 834 N

A = 7.5×10-3 m, B = 1.5×10-3 m, C1 = 7.78, C2 = 8.14, C3 = 6.63 :
SX = 0.002
SY = 0.002
OM = 0 m-1

FX = -12 606 N
FY = -12 606 N

SX = 0
SY = 0.002
OM = 0.002 m-1

FX = 0  N
FY = -13 954 N

SX = 0.002
SY = 0
OM = 0.002 m-1 
FX = -13 421 N
FY = -0.3 N

A = 1.5×10-3 m, B = 7.5×10-3 m, C1 = 3.37, C2 = 2.63, C3 = 0.603 :
SX = 0.002
SY = 0.002
OM = 0 m-1

FX = -5 549 N
FY = -5 549 N

SX = 0
SY = 0.002
OM = 0.002 m-1

FX = 0  N 
FY = -4 919 N

SX = 0.002
SY = 0
OM = 0.002 m-1 
FX = -6 254 N
FY = 0  N
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