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Creep Force Models in Vehicle Dynamics and Drive
Dynamics   =>  Demand of one Common Model

� Possible for use in vehicle
dynamics (small creep)

� Used for longitudinal and lateral
directions

� Function of creep

� Necessary for drive dynamics (large
creep - slip)

� Usually used only for longitudinal
direction

� Function of slip velocity
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Demand for Creep Force Model Suitable for Simulations
of Traction Vehicles Running on Adhesion Limit

Difference dry - wet rail:
� Reduced initial slope
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State-of-the-art:
� Modells with decreasing

section published
� Agreement only for dry and

clean contact conditions
� No simple model to simulate

real wet and/or polluted
conditions

� Adhesion optimum at large
creep on wet or polluted rail
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Wheel-rail forces are functions of at least four independent
variables (multi-dimensional problem):

Fx, Fy = f (sx, sy, �, a/b, Q, f)

Wheel-rail forces are functions of at least four independent
variables (multi-dimensional problem):

Fx, Fy = f (sx, sy, �, a/b, Q, f)

shape of the
contact areacreepages

Calculation of Creep Forces in Vehicle Dynamics

The calculation is repeated many times for each wheel in each
integration step

       �  the calculation time is very important
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A Time-Saving Method for Calculation of
Creep Forces in Multi-body Simulations
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� Compromise between calculation time and
necessary accuracy

� Magnitude of the resultant creep force as
integration of the shear stress distribution

� Effect of spin included - based on integration
of tangential stress distribution caused by pure
spin and on Kalker’s results

� Simple algorithm - no discretisation or iteration
loops necessary

� Calculation time comparable with saturation
functions or look-up tables

� Accuracy comparable with FASTSIM
� Method available in ADAMS/Rail, SIMPACK,

GENSYS and used in other tools as well
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� Friction coefficient decreasing
with slip velocity

Friction Coefficient Dependent on Slip (Creep) Velocity

� Reduction of Kalker‘s factor
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Limitations of the Model with Decreasing Friction
Coefficient
� Disagreement mainly for bad adhesion conditions

(contaminated or wet rail)
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Principle of the Extended Model for Large Creep

� Decrease of shear stiffness with increasing creep
� Modelled by two reduction factors
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Extended Model for Large Creep Applications

� Different reduction factors kA in the area of adhesion
and kS in the area of slip
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Parameter Identification from Measurements
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� Measurements with GM Locomotive SD 45X
(Logston-Itami, USA, 1980)
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Parameter Identification from Measurements
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� Measurements with Bombardier Locomotive SBB 460, watered rails
(Switzerland, 1992)
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Parameter Identification from Measurements
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� Measurement with Siemens Locomotive Eurosprinter (DB 127), dry rails
(Engel -Beck-Alders, Germany, 1998)
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Typical Parameters for Real Wheel-Rail Contact

� Three additional
parameters :

dry

k A 1.00

k S 0.40

µ 0 0.55

A 0.40

B  (s/m) 0.60
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Extended Model for Large Creep Applications     ( 1 )

sysx

fy

sysx

fx

%%%%

ωB = 0 rad/m
a/b = 1

� Influence of longitudinal, lateral, spin creepages and the shape
of the contact ellipse considered
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Extended Model for Large Creep Applications     ( 2 )
� Influence of longitudinal, lateral, spin creepages and the shape

of the contact ellipse considered

sysx
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ωB = 10 rad/m
a/b = 3.5
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Extended Model for Large Creep Applications     ( 3 )

� Influence of vehicle speed
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Influence of Tractive Force on the Self-Steering
Model of Locomotive SBB 460 (ADAMS/Rail)

Coupling shaft

Wheelset

Axle box

Linkage

Mechanism
of Wheelset Coupling:

Mechanism
of Wheelset Coupling:

Vehicle Model:

294 Degrees of Freedom
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Simulation of Adhesion Test with Locomotive SBB 460
� Output time plots - leading bogie

Rotor traction torque
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Co-Simulation of Vehicle Dynamics and Traction Control

Vehicle Model
(SIMPACK)

Traction Controller
(MATLAB-SIMULINK)
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Vehicle Model:
Test Locomotive DB 128 (12X)
� Extended multi-body model

• Vehicle model
• Traction chain with torsionaly

elastic wheelset
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Parameter Identification of Creep Force Model
from Measured Creeforce-Creep-Functions

� One parameter set considers the influence of :

• Vehicle speed
• Longitudinal creep
• Lateral creep
• Spin
• Contact geometry
• Normal force
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Creepforce-creep-function
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Reaction of Traction Control on Sudden Worsening
of Adhesion Conditions
� Starting on straight track
� Sudden decrease of friction coefficient
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Longitudinal guiding force
(Difference left - right)
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Comparison Calculation - Measurement

� Starting and acceleration of a test composition on curved sloping track
(Kanderviadukt, Switzerland, August 2001)
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Conclusions

� The proposed method enables computer simulations of complex
vehicle system dynamics including running and traction dynamics

� Influence of speed, shape of the contact ellipse, longitudinal, lateral
and spin creep is considered using one parameter set

� The method can be used to model the creep forces based on the
measured creepforce-creep-functions

� If no measurements are available, the parameters recommended for
typical wheel-rail contact conditions can be used in engineering
applications

� The method was used in complex simulations and validated by
comparisons with measurements


